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Global Estimates for Mixed Methods for 
Second Order Elliptic Equations 

By Jim Douglas, Jr., and Jean E. Roberts 

Abstract. Global error estimates in L2(92), L?(9), and H-s(Q), 2 in R2 or a, re derived 
for a mixed finite element method for the Dirichlet problem for the elliptic operator Lp = 
- div(a grad p + bp) + cp based on the Raviart-Thomas-Nedelec space Vh x Wh c 
H(div; 92) x L2(g2). Optimal order estimates are obtained for the approximation of p and 
the associated velocity field u = -(a grad p + bp) in L2(g2) and H-s(92), 0 6 s < k + 1, 
and, if Q c R2, forp in LV2().. 

1. Introduction. Let Q be a bounded domain in R2 or R3 with boundary a , and 
assume that the Dirichlet problem 

(1i1) (a) Lp --div(a(x) gradp + b(x)p) + c(x)p =f(x), x e 

(b) p= -g(x), xE eM, 

is solvable for {f, g} E L2(Q) x H3/2( a ) and that 

(1.2) I11P12 < Q { Ilf llo + 1g13/2}, 

where we shall indicate the norms in Wm, q(S) by 11 * m,q with q = 2 being omitted 
and in Wm q(aQ) by *Im,q respectively, again with q = 2 being omitted. Let 
(1.3) u = -(a grad p + bp), 

and set 

(1.4) a(x) = a(x)1, f(x) = a.(x)b(x). 

Then, the differential equation (1.la) can be written in the form of the first order 
system 

(1.5) ~(a) au +gradp + p =O0 

(1.5) (b) divu + cp=f, x e. 

Let 

(1.6) (a) V = H(div; Q) = {u E L2(U)2: divu E L2(Q)}, 

(b) W = L2(Q). 

Then, the weak form of (1.1) that we shall treat is given by seeking a pair 
{u,p}EVX Wsuchthat 

(1.7) (a) (au,v)-(divv,p) +(,Bp,v) =(g,v v), v e V, 

(b) (divu,w) +(cp,w) = (f,w), we W, 
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where v is the outer normal to ag and the inner product in L2(0)' is indicated by 
(*, *) and in L2(ag) by ( *, *); the same notations will be used for the dualities 
between HS(9) or Ho(Q) and its dual and H-s(ag) and Hos(ag), respectively. It is 
known [13] that v *v E H-1/2(ag) when v E V. 

Let 
Vh>x Wh = V(Q, 9h, k) x W(Q, 9h, k) 

denote the Raviart-Thomas-Nedelec space [7], [8], [13] of index k associated with a 
quasi-regular partition Th of Q into triangles and rectangles (or parallelograms) of 
diameter not greater than h such that every angle of each triangle is bounded below 
by a positive constant. Boundary triangles or rectangles are allowed to have one 
curvilinear edge. Let Q C R2 for the moment and let Pk(T) denote the restriction of 
the polynomials of total degree k to the set T; similarly, let Qk(T) indicate the 
restriction of Pk ? Pk to T. Also, let Pk(T) = Pk(T)2. If T E -h is a triangle, let 

V(T) = Pk(T) @ Span(xPk(T)), W(T) = Pk(T). 
Similarly, if T is a rectangle, let 

V(T) = {v E Qk+l(T): W - 0ji), W(T) =Qk(T). 

Then, let 

Vh = V(k, h) = {v E H(div,Q0): vITE V(T), TEYhi, 

Wh= W(k, Yh)= {w E L2 (): WIT E W(T), T E h}. 

The requirement that v E H(div, Q) is equivalent to asking for continuity in the 
normal component across the edges of the elements; i.e., if e = Ti n Tj and vi is the 
outer normal to Ti on e, then vIT - vi + vIT * v = 0 on e. The above formulation of 
the Raviart-Thomas spaces coincides with that of Raviart and Thomas [8] for 
rectangular elements and is the modification due to Nedelec [7] on triangular 
elements. With the obvious modification that Pk(T) indicate Pk(T)3 for T being a 
simplex in R3, etc., the spaces Vh x Wh defined above remain valid for Q c R3; 

consequently, the method to be specified in (1.8) is applicable for problems in three 
space variables. 

Our mixed method for approximating the solution of (1.1) is defined by the 
determining of a pair {Uh, Ph } E Vh X Wh such that 

(1.8) (a) (auh,v))-(divv,ph) +( pP,v) = (gv * v) I E Vh, 
(b) (divuh, w) +(Cph, w) = (f, w), w E Wh. 

This procedure, which was given explicitly by the authors in [2], represents the 
simplest and most direct extension of the standard mixed method [1], [4], [5], [8], 

[10], [13]. 
We shall establish the existence and uniqueness of a solution of (1.8) for 

sufficiently small h; moreover, we shall show that the differences p - Ph and u -Uh 

are of optimal order in L2(Q2) and in H-s(Q) or HS(0)' for s < k + 1, provided, of 
course, that the domain Q and the solution p are sufficiently regular. Indeed, we shall 
prove that 

(1. ) (a) IIP - PhIIO < QIIPIIk+?hk, IIU - UhIIO < QIIPIIk+2h 
(1.9) 11 - -I +IIu 11 11 _ - 1 ,hIL 1 ~ QI[pIIk?3h2k+2 



MIXED METHODS FOR SECOND ORDER ELLIPTIC EQUATIONS 41 

We shall show as a trivial corollary of our basic duality lemma that, when Q c R, 

(1.10) IIP -PhlIo,. < Q{ IIPIlk+?1, +Ip11k+2}hh , 

a result obtained earlier by Scholz [10] for the Laplace operator; he has since [11], 
[12] found a better result for the Laplace operator than (1.10). 

An entirely analogous development can be given for the Dirichlet problem 

(1 11) (a) -div(a(x) gradp) + b(x) gradp + c(x)p =f(x), x E Q, 

(b) p =-g(x), X EE a. 

In this case the auxiliary variable is chosen to be 

(1.12) v = -a grad p; 

see [2] for the corresponding L2( g)-estimates for the error. The basic arguments of 
this paper can be applied to obtain negative norm and L?(Q) estimates of the same 
nature as those we derive. 

The extension of our convergence results to the case Q c R3 will be noted in the 
last section of the paper. Until then, consider Q to be a planar domain. 

2. The Raviart-Thomas Projections and the Error Equation. The Raviart-Thomas 
spaces that we use consist on each triangle (we include "rectangle" as a special 
meaning of "triangle") of exactly the sets of polynomials that would have resulted 
on the triangle when all of its edges are linear; i.e., the space is unmodified on 
boundary triangles. Thus, we preserve the relation 

(2.1) divVh = Wh. 

For polygonal domains Raviart and Thomas [8] defined a projection 

(2.2) nh X Ph: V X W *Vh X Wh 

having the properties: 

(i) Ph is L2(Q)-projection; 
(ii) the following diagram commutes: 

div 
V W 

-Ih 1 Ph 

div 
Vh ' Wh , 0; 

onto 
i.e., div lh = Phdiv:V -* Wh; 

(iii) the following approximation properties hold: 

(a) IIu - IhUllo < QIIlIIrhr, 1 < r < k + 1, 

(2.3) (b) Ildiv(u - lhu)11S s Qlldivullrhrs, 0 < r, s < k + 1, 

(C) IIP - PhPIl-s < QllPllrh?r+s 0 < r, s < k + 1; 

(iv) (redundant) 

(2.4) 
(a) (div(u - HIhu), wh) = 0, Wh E Wh, 

(b) (divvh,p - Ph p) = 0, vh e Vh. 
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In the next to last section of this paper, Douglas N. Arnold and we present a way to 

modify the definition nh restricted to a boundary triangle having a curved edge so 
that all of the above requirements are met when the resulting local projection is 
combined with the standard local version. 

Let 

(2.5) (a) =u 
- 

Uh, 
a = 

IhU Uhl 

(b) rI=p-Ph, T=PhP Ph' P=P PhP. 

It then follows immediately from (1.7) and (1.8) that 

(2.6) (a) (at, v) - (divv, i) + (I , v) = O, v E Vh, 

(b) (div ,w)+(cq,w)=0, we Wh, 

or, equivalently, that, as a result of (2.4b), 

(2.7) (a) (at,v) -(divv, T) +(PT,v)= -(3p,v), v E Vh, 

(b) (div ,w)+(cT,w) = -(cp,w), wC Wh. 

The argument to be presented below is a refinement and extension of that given 

briefly by the authors [2]. As such, it also represents an extension of some results of 
Johnson and Thomee [5] and is a natural analogue of the argument developed by 
Schatz [9] for treating Galerkin methods for the Dirichlet problem for noncoercive 
operators. We shall first demonstrate several forms of a duality lemma and then 
derive error estimates. 

The orthogonalities given in (2.4) play a fundamental role in our discussion of 

duality. Elsewhere, Arnold, Chaitan Gupta, and Douglas treat the plane elasticity 
problem in a similar fashion using a mixed method based on a new family of 

elements designed to satisfy relations corresponding to (2.4) and having approxima- 
tion properties of a somewhat more complicated nature than those of (2.3). Arnold, 
Brezzi, and Douglas will discuss a yet different approach to plane elasticity based on 
a set of finite elements which do not satisfy the -usual symmetry properties for the 
stress tensor but do satisfy (2.4). Also, Douglas and Milner have developed interior 
and superconvergence results for the mixed method (1.8). 

3. The Duality Lemmas. We shall employ duality with respect to HS(9) in place of 

Ho'(9); i.e., if g E L2(Q), then 

(3.1) IspIu-s = IpII-s,2,S = SUp s, > 0. 
04='xPe(a) 1|+|s 

Nothing of interest would change if the usual dual space H-s(Q) = (Ho(9))' is used. 
We shall say that Q is (s + 2)-regular if the Dirichlet problem 

(3.2) (a) L*q= , x E Q, 
(b) g = O, x E au, 

is uniquely solvable for 4 Ee L2(Q) and if 

(3.3) 1111s+2 < QII1PIs 
for all41 E Hs(Q). 
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If f E V', the dual space of V, then it can be represented by a pair {f0, fi } of 
functions such that f0 E L2(Q)2,f1 E L2(Q2), and 

(3.4) f(v) = (f0,v) +(fl, divv), v E V. 

The first version of our duality lemma is as follows. 

LEMMA 3.1. Let the index k of Vh X Wh be at least one and let 0 < s < k - 1. 
Assume that g2 is (s + 2)-regular. Let , E V, f = {f0, fi } E V', and g E W' = L2(Q 
If z e Wh satisfies the relations 

(a) (at,v)-(divv,z)+(I3z,v)=f(v), v e Vh, 

(3.5) (b) (div , w) +(cz,w) = g(w), w E Wh, 

then, for sufficiently small h, 

(3.6) lIzlI-s -< Q{ hs"ltIIIo + hs+?2Ildiv t 1Io + IlfollI-s-, + hs+lIIfoIIo 

+ llfill -s + hsllfillo + llgll -s-2 + hs+2lIgIlo}. 

Proof. Let 4 E Hs(g), and let 'g e Hs+2(g) nl Ho(Q) be the solution of (3.2). By 
(3.5a) and (2.4a), 

(z,4 ) =(z,-div(a grad q) + *a grad g + c) 

- (ar, Hhl(a grad 9))) +f(Hh (a grad (I)) 

+ ( z, agradq) - flh(a grad 9))) + (cz, p). 

Then, by (3.5b), 

(cz, ) = (cz + divr, g - Phg) + g(Phq9) -(div , q) 

and 

-(div , q) = (, gradq) = (at, agradqg) 

= (at, I7h(a grad q)) + (at, agradp - Ih(a grad q)). 

These relations combine to show that 

(3.7) (z, 1) = f(Hh (a grad q)) + g(Phq) 

+ (at + Pz, agradqg - h(a grad q)) + (div + cz,9) - Php). 

Then, 

If (IIh (a grad 9)) I < If(a grad ) ) + if(a grad - Ilh (a grad 9)))I 
< l1fo0l -_-1i1a grad (IIsPj + lAif|l -s5Idiv(a grad (p)Is 

+ Ilfollolla grad g -IIh (a grad qg) )j0 

+ llf1IIoIIdiv(a grad (g - Hh(a grad 9)) IIo 

< Q { Ilfoll -s-i + hs+1IIf0II0 + llf1 ||-s + hsIIf1II0o} II0PIIs 

by (2.3) and (3.3). Similarly, 

Ig(Ph9) I < Q { lIgII -s-2 + hs+2 1g101} II4IL. 
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Again by (2.3), 

I(a + z, a gradq -IHh(a grad q)) + |(div t + cz, g- Phqg) 

< Q { h"+11t1lo + lizilo) + hs+2(Ildiv |lo + 1Izlo)}I IPIIs. 

Thus, 

(3.8) lIzIl -s < Q { hs?lIltIo + hs+2Ildiv llo + Ilfoll-s-l + If1IL_ + h?1lfollo 

+hsllfillo + 11gII-s-2 + hs+211glIo + hs+lIIz11o}. 

Consider s = 0. For h sufficiently small, the h I zl 0-term on the right-hand side can 
be absorbed into the left-hand side, and the inequality (3.6) has been established for 
s = 0. Then, for 0 < s < k - 1, (3.6) holds, provided that 11gl112hs+l can be 
bounded by the terms on the right-hand side of (3.6). But, standard interpolation 
theory for the spaces HS(Q2)' [6] implies that 

g- Qls/(s+2) 1g2/(s+2) < Q { hilgilo + h-sl2||g-2 
ugh- Qjgjj III-s-2 -Q{jjgjo 

and the proof of the lemma has been completed. 
The cases k = 0 and s = k when k > 1 are not covered by Lemma 3.1. Because of 

reaching the limits of approximability provided by (2.3), a change in the form of the 
estimate occurs. In the applications below to finding error estimates, we shall be able 
to maintain optimal order estimates when the s = k lemma is used, but a cost of 
additional regularity results. 

LEMMA 3.2. Let the index k of Vh X Wh be nonnegative, and let i be (k + 2)-regular. 
Let ' Ee V, f = {f0,O} E0 V', and g E L2(o). If z E Wh satisfies (3.5), then for h 
sufficiently small, 

(3.9) IIZII-k < Q{hk?1(IItII0 + Ildivtljo + llfollo + lug0lo) + lIfoll-k-1 + lIgil-k-2}. 

Proof. The relation (3.7) remains valid, except that fi has been set to zero. Now, 
the limit on approximability for q9 - Phq reduces the exponent s + 2 = k + 2 to 
k + 1 in two places in the arguments; otherwise, the proof is unchanged. 

It should be noted that all factors of h occurring in the estimates (3.6) and (3.9) 
come from the use of (2.3). Since the projections 1Ih and Ph are defined locally 
through moments over individual triangles (including boundary ones), these bounds 
can be sharpened to become more local in character, since we have assumed a 
minimum angle condition for the polygons T E -h. We have actually proved, in 
place of (3.6), that (when, say, f1 = 0 and diam(T) = hT), 

(3.10) IIzhI-s 5 TQ( E [hr <Q(IIT IT + 0Ifo,T) + 0 T + 0IghIo,T)J 

+ hI-0hIs1 + hIGlI-s-2} 

for 0 < s < k - 1. We shall not pursue these additional refinements. 

4. Error Estimates in L2(i2). Assume momentarily that (1.8) has a unique solution, 
at least for small h. That it does, will be easily observed from the convergence 
analysis. Now, apply either Lemma 3.1 with s = 0 or Lemma 3.2 with k = 0 to the 
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error equations in the form (2.7). Then, for h small and for S2 2-regular, 

kilo - Q { hiltilo + h2-8kolidiv kilo + lIpIl -1 + hjjpjo} . 
Since 

IIIP-i + hIlplpo < QIIPIlrhr+l 
forO < r < k + lby(2.3c), 

(4.1) IkTIIo < Q{ hililo + h28- kojdiv kilo + IIPlIrhr+l} 
for O < r < k + 1, and 

(4.2) lIIllIo < Q{IlIlloh + h2-koIlIdiv kilo + IIPlIrhr}, 0 < r < k + 1. 
Since, by (2.4a), (divc, w) = (div t, w) for w E Wh, it follows from (2.6b) and the 

choice w = div c E Wh that 

(4.3) ljdivarijo < QI[rlllo, 
so that 

(4.4) ||div kilo < Q{ 11 llo + j|divujjqh }, 0 < q < k + 1. 
Next, take the test function v = a in (2.6a) to see that 

(aa,a) = (divc,'q) -(0,a) -(a(u - Ihu),c); 
consequently, 

(4.5) liailo < Q {IL,I|0 + |Iu|Itht}, 1 < t < k + 1, 
and 

(4.6) llillo < Q{l1,l10 + llulitht}, 1 t < k + 1. 
If (4.4) and (4.6) are substituted into (4.2), then for 0 < r < k + 1, 0 < q < k + 1, 

and 1 < t < k + 1 it follows that 

1IqIIo < Q { hjqilJ0 + IIPIIrhr + jjujitht"1 + lidivUjjqhq+2-8ko } 
Thus, for small h and the choices r = t + 1 = q + 2-SkO, 

IIII Q jPjj2h if k =0, 
111o (QIIPIlrhr if k > I and 2 < r < k + 1, 

since IIUII r- 1 + IIdiv UII r-2 < QII PII r. The estimates can be written in a more compact 
form for k > 0 and 0 < q < 2 as 

(4.7) II?lIIo < Qllpllr+qhr 2 - q < r < k + 1. 
It then follows immediately that, for k > 0 and 0 < q < 1, 

(4.8) (a) llillo < Qllpllr+l+qhr, 1 - q < r < k + 1, 
(b) ljdivjllo < Qllpllr+2hr, 0 < r < k + 1, 

and the analysis of the errors, as measured in L2(i2), is finished. 
Before collecting the results of the error analysis in a theorem, let us demonstrate 

the existence and uniqueness of the solution of (1.8). Since (1.8) is linear, it suffices 
to establish uniqueness; thus, we suppose the data functions f and g to vanish. The 
choice w = div Uh in (1.8b) implies that 
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Next, note that Lemma 3.1 or Lemma 3.2 implies that 

IlPhIlo < Q{hlluhlO + hIldivuhlolo 

so that, for small h, 

IlPh lo < QhlluhlIIo 

If the test function v in (1.8a) is taken to be Uhl then it follows that 

||Uh||0 < QIIPhllo < Qh11Uh110l 

so that Uh vanishes for small h, along with Ph. So, uniqueness has been demon- 
strated. We have proved the following theorem. 

THEOREM 4.1. Assume that the Dirichlet problem (1.1) has a unique solution 
p E H2(Q) for every pair { f, g } E L2(Q) X H3/2( aQ) and that sa is 2-regular. Then, 
for h sufficiently small there exists a unique solution {Uh, Ph } E Vh X Wh of the mixed 
method equations (1.8). Moreover, the error {u - Uh, P - Ph } can be estimated by the 
inequalities 

(a) IIP - PhIIo / QJJpjJ2h if k = 0, 
QIIPllrhr if k >?1 and 2 < r < k + 1, 

(4.9) 
(b) IIu - Uhlio < QIIPIIr+?hr if 1 < r < k + 1, 

(c) Ildiv(u - uh)II0 < QIIpIIr+2hr if 0 < r < k + 1. 

Theorem 4.1 was obtained by the authors in [2]; however, the proof given above is 
more direct, in that an unnecessary step in which Brezzi's general saddle point 
approximation results [1] were applied to a reduced problem has been avoided. The 
bound given by (4.1), above will allow us to obtain an L?(2) estimate for p - Ph 

very easily. It should also be noted that the weak problem (1.7) for nontrivial b and c 
is not a compact perturbation of that for b and c vanishing; thus, Theorem 4.1 is not 
a straightforward corollary of the approach of Falk and Osborn [4], who have 
proved (at least implicitly) the same estimates (4.9) when k > 1, b = 0, and the form 
is coercive. 

The constraint that h be sufficiently small in Theorem 4.1 results from not having 
assumed the original problem to be coercive. If in (1.8) we take v = Uh and w = Ph, 

and if the two equations are then added, we see that 

(auh,Uh) +(Cph, Ph) +(IPh,uh) = (f, Ph) + (g,uh V)- 

It is then easily seen that, if c(x) > 0 and 

b (x)2< 4(1 - y)a(x)c(x) 

for some y E (0, 1), the algebraic equations of (1.8) are solvable; moreover, the error 
estimates hold without the constraint on h. 

5. Error Estimates in L?(2). In this section we shall impose the additional 
constraint on Y7-h that 

(5.1) diam(T) = hT > -yOh, TE= 9h, 

for some yo E (0,1). Then it follows from (4.1) and (4.9) that 

(5.2) lITilo < QIIPIIr+1+8kohr?l, 1 < r < k + 1, 
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and that, using (5.1) as well as the angle constraint for f-, 
(5.3) IITIoo 0 < Qh-lIITIIo < Q|pIr?+l?+ koh r 1 < r < k + 1. 

Thus, for k > 0, 

(5.4) IIP - PhIIO,. < IIP - PhPllo,. + 1IT110,0 

< Q{llPlIr,oo +IPIr+1?+8k}hr 1 h r < k + 1. 
Note that (5.4) is an optimal order estimate; the regularity required of the solution 

of the differential problem is not minimal, since we need p to belong to Hr+l(i2) 

when k > 1 and to H3(S2) when k = 0 to obtain 0(hr) or 0(h), respectively, in 
L'(9). Scholz [10] has demonstrated (5.4) for k > 1 when the differential operator 
L has the form - Ap + cp, c > 0; his method of proof employed weighted L2-norms. 
Recently, [11], [12] he has improved his earlier results to obtain optimal L?-esti- 
mates for p - Ph that are optimal with respect to order and regularity; he also 
obtained an estimate in Lw for u - Uh that is optimal modulo a factor of Ilog hi. 
These results were presented for the Laplace operator. Johnson and Thomee [5] 
obtained a slightly weaker result than ours for p - Ph by essentially the same 
observation as ouirs, again limited to k > 1 and the Laplace operator. Our result for 
k = 0 seems to be new, even for the Laplace operator. The argument above is sharp 
only for &2 c R2. 

Our result can be summarized as follows. 

THEOREM 5.1. Let 1h be quasi-regular and let (5.1) hold, and assume that sa is 
2-regular. Then, for h sufficiently small, 

(5.5) IIP - PhIlo,oo < Q { lPllr,oo + IIPllr+?1+kO } hr 

for 1 < r < k + 1. 

6. Error Estimates in Hs(i2)'. Let S2 be (s + 2)-regular, and consider first the range 
0 < s < k - 1 (which requires that k > 1). Then the application of Lemma 3.1 and 
(2.3c) to the error equations (2.7) produces the bound 

IItTII-s < Q{hs+ 1lllo + hs+2IldivIllo + hr+s+?lIpIIr} 

for 0 < r < k + 1. It then follows from Theorem 4.1 that 

(6.1) IITIK-s < QIIPIIr+?hr+s+l, 1 < r < k + 1, 
from which we see that 

(6.2) l|7ll-s- Q|Pllrh+ if 2 < r k+ land0 < s < k-1. 
The estimate (6.2) is optimal with respect to regularity and is the desired result over 
the range of s admitted. 

We can also employ Lemma 3.2, now for k > 0 and s = k. Then, using Theorem 
4.1 again, 

(6.3) H|TI|-k < Q{hk 1(jljllo + IldivIllo + IIp - Ph pII0) + IIP - PhPII-kl-} 

QllPllr?2hr?k?l 0 < r < k + 1. 
Thus, (6.3) can be used to obtain each of the following inequalities: 

(6.4) [l'ill-k < QIPIIr+?h rk 1 < r < k + 1 
and 

(6.5) [l'ill-k-1 < QIIPIIr+2hr+k?1, 0 < r < k + 1. 



48 JIM DOUGLAS, JR. AND JEAN E. ROBERTS 

The regularity of S2 needed for (6.5) is the same as for (6.4); i.e., (k + 2)-regular. 
Note that both (6.4) and (6.5) are optimal order estimates, in that O(h2k+l) and 

O(h 2k+2) bounds are obtained when r is allowed to assume its maximum value 
k + 1; however, one extra derivative is required of p for the s = k estimate and two 
for s = k + 1. Consequently, these bounds are not of the nature that would be 
expected to result from the general stability approach of Brezzi [1] and Falk and 
Osborn [4]. 

Consider next the divergence of u - Uh. Let k > 0 and 0 < s < k + 1, and let 
g E Hs(S2). Then, by (2.6b), 

(divE, ) = (divE, Php) + (dive, q - P^h) 

=-( cq, 9 ) + ( cq + div E, 99 - Ph ), 

so that 

(6.6) lIdiv Ell -s < Q {I IlIl -s + hs(lIllo + Ildiv Ello)) < QI[pIlr+2hr+s 

for 0 < r < k + 1, by Theorem 4.1 and (6.2), (6.4), or (6.5). This estimate is optimal 
with respect to both rate and regularity for all admitted choices of r and s. 

Finally, let us consider bounding E in Hs(g)'. Let 4i E Hs(Q2)2. We should like to 
have a function q9 e Hs+l(S2) such that ip = -agradq and q9 = 0 on a 2; unfor- 
tunately, this overspecifies p, so that a new argument must be given. Let q9 E 

Hs+ l(si) n Ho(i2) be the solution of the Dirichlet problem 

(a) -div(agradq) = divip, x e 2, 
(6.7) (b) =0, xE u. 

Assume that Q is (s + 1)-regular for (6.7); this is no more a requirement on S2 than 
(s + 1)-regularity for L*. Then, 

(6.8) 1191s+l < QlIdiv4lIs-l < Qllills. 
Furthermore, i = - a grad q + 8, where div 8 = 0 and 

(6.9) II8ils < Q11411s. 
Now, 

(6.10) (atd,)) -(at, agrad) +(at, 8) = (divE, ) +(at, 8). 

As in the argument for (6.6), 

j(div E, :) I < Q { hlulh -s-1 + (Ilqllo + Ildiv klIo) hs+1 ) } 4lls 

for 0 < s < k. Hence, 

(6.11) |(divE, i)I < QIIPllr+2hr+s+lIl Is, 0 < r < k + 1. 

Then, since div 8 = 0 and by (2.4), 

(a?t,8) = (at,Hh8) +(at,8 - 11h8) 

= (div H8,h8) -U(3ml Hh8) +(at, 8 - 11h8) 

= (div(11h8 - 8), T) + (div h8, P) 

__(I3, 8) +(P + at, 8 - 1h8) 

(f3 8) +(q + at, 8 - h8) 
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from which it is apparent that 

(6.12) (at, 8)1 < Q{ ILJl7l -s + (II,qlJo + llIo)hs) II4J11s 

for s > 1; (6.12) follows trivially from (6.9) for s = 0. It should be noted that (6.12) 
holds when s = k + 1 as well as for 0 < s < k. Thus, 

(6.13) |(at, 8)1 < ( QII 1r?+lhr+s1J4IIs for0 < s < k and 1 < r < k + 1, 

QllPllr+2hr+k+lll4,llk+l fors = k + 1 and 0 < r < k + 1. 

The inequalities (6.11) and (6.13) can be combined with (6.10) to imply that 

f QIIPllr+lhr+s for O < s < k and 1 < r < k + 1, 
(6.14) lijji ks l QllPllr+2hr+k+l fors = k + 1 and O < r < k + 1. 

The estimate (6.14) is optimal in order for 0 < s < k + 1 and is optimal in 
regularity for 0 < s < k, with one additional derivative being required of p for 
s = k + 1. 

Note that we have proved, in particular, that 

(6.15) IIP -Philki + llU - Uhllkl + Ildiv(u - uh)I k-1 < QllPllk+3h2k?2 

for k > 0. Since the mixed method is more nearly associated with L2-projection than 
projection into any other Sobolev space Hq(S2), certainly no greater exponent than 
2k + 2, which is the maximum occurring in L2-projection, could be expected. The 
regularity required to obtain this exponent is correct for the divergence term; a 
similar observation has been made by Arnold, Douglas, and Gupta for a related 
mixed method for the equations of plane elasticity. 

Our results can be summarized in the following theorem. 

THEOREM 6.1. Let i be (s + 2)-regular. Then, for h sufficiently small, 

(a) IIP - Phll -s 

(QllPilrhr+s for O s < k-I and2 < r < k + 1, 

< QliPllr+lhr+k fors =kandl < r < k + 1, 

QiIPIir+2hr+k+l fors =k + 1 andO < r < k + 1, 

(6.16) (b) Ilu - Uhll-s 

/ QiiPIir+lhr+s forO < s < k andl < r < k + 1, 

| QIiPiIr+2hr+k+l fors = k + 1 andO < r < k + 1, 

(c) lldiv(u - Uh)1-s 

< QiIPIIr+2hr+s for0 < s < k + 1 and0 < r < k + 1. 

7. The Projection 11h on a Boundary Triangle. We shall consider the case of a 
triangular element T with two straight edges, say el and e2, and one curvilinear edge, 
e3. The rectangular element can be handled similarly. Recall that we have defined 
the restriction of the Raviart-Thomas spaces to the curvilinear triangle to be the 
extension of the polynomials that would have been associated with the ordinary 
triangle with the same vertices. There are five objectives in the definition of 1h on 
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an ordinary triangle: unisolvence, the reproduction of Pk(T), the orthogonality 
of (u - H hu) v to polynomials of degree k on the edges, the orthogonality of 
div(u - Hhu) to polynomials of degree k on T, and the existence of a bound on the 
map Hh: H1(T) -* L2(T). Now, it is a simple exercise to show that the degrees 
of freedom chosen by Raviart and Thomas are equivalent on an ordinary triangle to 
the requirement that 

(a) J(u- Ihu) vP ds = O, p E Pk(ei), i = 1, 2, 3, 

(7.1) (b) fdiv(u- Hhu)4 dx = 0, EPk(T), 

(c) j(u- HIhu) curl 4 dx = 0, 4 E Pk(T). 

This can be seen perhaps most easily by observing that the following sequence is 
exact (P,C is the space of polynomials of degree k in one complex variable with 
complex coefficients): 

c grad + curl 
0 PkC Pk X Pk 0 Pk-1 . 0- 

We shall select our degrees of freedom from the above list of possibilities 
augmented by allowing 4 E Pk+l(T) in (7.1c), noting that we do not need to 
constrain HhuU v on the curvilinear edge e3. It is clear that we can give our degrees 
of freedom on a r'eference triangle S = S(T) having vertices at (0,0), (0,1), and 
(1, 0), where S is obtained affinely from T with el going to e' = ((O, 0), (0, 1)) and e2 
to e2 = ((O, 0), (1, 0)). Note that, since au2 is smooth, the image of e3 is smooth and 
lies in a lense of width 0(h) about the segment ((0, 1), (1,0)). First, let us preserve 
the orthogonalities (7.1b) and those of (7.1a) on el and e2: 

(a) fdiv(u - lIu) + dx =O, EPk (S), 

(7.2) 
(b) jf - tIf) i pds = 0, d E Pk(e&), i = 1, 2. 

e 

Let 

Y = {vt E V: v - = 0 on e' and &2, diviv = O}, 

and note that Y is independent of S and that, since the conditions v v = 0 on el 
and e2 and div v = 0 are linearly independent, Y has the correct dimension to 
provide the required additional degrees of freedom. Now, recall that Ih is used 
solely for analytical purposes and not for computational ones; thus, we can let S* be 
the triangle with vertices (0,0), (0, 2), and (1, 0) which lies inside S for h even 
reasonably small, and then impose moments against Y over S*: 

(7.3) J(u tu) 
-vdx=0, 

EY. 

Note that, if v E Y, iv E Pk, since diviv = 0; this is one of the properties used by 
Raviart and Thomas to define V. 
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The space Y is trivially found for small k. For k = 0, Y is the null space. For 
k = 1, Y is one-dimensional and is the span of the vector (x, -y). For k = 2, Y has 
dimension three and 

(7 4) y [~~~ x(a + bx + 2cy] (7.4) V Ev=[x(- +b V+=CY)) 

Note that Y C curl (Pk+l(S))- 

It is clear that 1h reduces to the identity on V. It is also clear that 

(7.5) Ildiv flullo,s + IlftIi V* oeu + IIProJfjytIluo* u QII'lII , 

which establishes the boundedness of H as a map from H1(S) to L2(S), since the 
vanishing of the terms on the left-hand side of (7.5) requires lIu to vanish. Finally, a 
version of the Bramble-Hilbert lemma given by Dupont and Scott [3, Theorem 5.1] 
shows that there exists a constant Q1 that is independent of S within the set arising 
herein such that 

lii - fIUlIo, s Qlll - ftI11(H1(9),L2(9))IUJr,S < QR'Ir,g 

for 1 < r < k + 1, where Ir is the seminorm associated with derivatives of exact 
total order r over the set S. The usual scaling shows that 

(7.6) IIU - HhUII1oT < QIUIr,Thr, 1 < r < k + 1, 

where IIh is the projection operator on H1(T) such that 

(7.7) Iu=Iu, Ii = TIS. 

This completes the description of the restriction of nh to a boundary triangle. If 

Ph remains the L2-projection onto Pk(T) when restricted to L2(T), then the global 
IHI-projection of V onto Vh has the desired properties that were listed in (2.3) and 
(2.4). 

This section represents joint work of Douglas N. Arnold and the authors. 

8. The Three Space Variable Problem. Let Q be a bounded domain in R3 with 
smooth boundary aQ. Let gh be either a simplicial decomposition of Q into simplices 
with maximum diameter h and minimal solid angle at a vertex greater than some 
positive constant or a decomposition into rectangular elements having maximum 
diameter h. In the simplicial case boundary simplices can have one nonflat face. 

The procedure (1.8) remains defined when Vh X Wh are specified following 
Nedelec, as remarked earlier. Moreover, all of the error estimates in L2(Q) and 
HS(02)' remain valid. 
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